Self-adaptive inertial extragradient algorithms for solving variational inequality problems
نویسندگان
چکیده
In this paper, we study the strong convergence of two Mann-type inertial extragradient algorithms, which are devised with a new step size, for solving variational inequality problem monotone and Lipschitz continuous operator in real Hilbert spaces. Strong theorems our algorithms proved without prior knowledge constant operator. Finally, provide some numerical experiments to illustrate performances proposed comparison related ones.
منابع مشابه
The Mann-Type Extragradient Iterative Algorithms with Regularization for Solving Variational Inequality Problems, Split Feasibility, and Fixed Point Problems
and Applied Analysis 3 open topic. For example, it is yet not clear whether the dual approach to (7) of [29] can be extended to the SFP. The original algorithm given in [15] involves the computation of the inverse A (assuming the existence of the inverse of A), and thus has not become popular. A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne [16, 21] which is ...
متن کاملA New Version of Extragradient Method for Variational Inequality Problems
In this paper, we propose a new version of extragradient method for the variational inequality problem. The method uses a new searching direction which differs from any one in existing projection-type methods, and is of a better stepsize rule. Under a certain generalized monotonicity condition, it is proved to be globally convergent. @ 2001 Eisevier Science Ltd. All rights reserved. Keywords-Vs...
متن کاملAlgorithms for Bilevel Pseudomonotone Variational Inequality Problems
We propose easily implementable algorithms for minimizing the norm with pseudomonotone variational inequality constraints. This bilevel problem arises in the Tikhonov regularization method for pseudomonone variational inequalities. Since the solution set of the lower variational inequality is not given explicitly, the available methods of mathematical programming and variational inequality can ...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملAn extragradient iterative scheme for common fixed point problems and variational inequality problems with applications
In this paper, by combining a modified extragradient scheme with the viscosity approximation technique, an iterative scheme is developed for computing the common element of the set of fixed points of a sequence of asymptotically nonexpansive mappings and the set of solutions of the variational inequality problem for an α-inverse strongly monotone mapping. We prove a strong convergence theorem f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2021
ISSN: ['1807-0302', '2238-3603']
DOI: https://doi.org/10.1007/s40314-020-01393-3